目录
设置
书架
听书
欢迎使用听书服务

发声

  1. 小美
  2. 小宇
  3. 逍遥
  4. 软萌
  5. 小娇
  6. 米朵
  7. 博文
  8. 小童
  9. 小萌
  10. 小贤
  11. 小鹿
  12. 灵儿
  13. 小乔
  14. 小雯
  15. 米朵
  16. 姗姗
  17. 小贝
  18. 清风
  19. 小新
  20. 小彦
  21. 星河
  22. 小清
  23. 南方

语速

  1. 适中
  2. 超快

音量

  1. 适中
播放
评论
扫描下载”飞鸟阅读”客户端
扫码手机阅读

美妆店通三界,我混得风生水起!

作者:天玄瑶章 | 分类:女生 | 字数:3.4万字

第7章

书名:美妆店通三界,我混得风生水起! 作者:天玄瑶章 字数:3.3千字 更新时间:12-13 17:09

在加利福尼亚州帕罗奥多市[11]的数字设备公司[12]的实验室里,一名工程师向我演示了分布式计算的优势:他打开装有公司内部计算机网络的机柜门,动作夸张地从里面拔掉了一条电缆。网络路由毫不迟疑地绕过了缺口。

当然,任何蜂群思维都有失灵的时候。但是,因为网络的非线性特质,当它确实失灵的时候,其故障可能类似于除了蔬菜什么食物都记得的失语症。一个有损伤的网络智能也许能计算出圆周率的第十亿个数位,却不能向新地址转发邮件;它也许能查出为非洲斑马变种进行分类这样晦涩难懂的课本文字,却找不出任何有关一般动物的合乎情理的描述。对蔬菜的整体「健忘」不太像局部的储存器故障,它更像是系统层面上的故障,据其症状推断,有可能是与蔬菜相关的某种特殊关联出现了问题——就像计算机硬盘中的两个独立但又相互矛盾的程序有可能造成一个「漏洞」阻止你打印斜体字一样。斜体字的存储位置并没有被破坏,但是渲染斜体字的系统进程被破坏了。

创建分布式计算机思维所遇到的一些障碍可以通过将计算机网络建立在一个箱体内的方法加以克服。这种经过刻意压缩的分布式计算也被称为并行计算,因为在超级计算机中的成千上万的计算机在并行运转。并行超级计算机不能解决「办公桌上闲置的计算机」问题,也不能将散布各处的计算能力聚合起来;并行运转是其本身和内部的一个优势,不过单就为了这一点,也值得花一百万美元来制造一个单机装置。

并行分布式计算非常适用于感知、视觉和仿真领域。并行机制处理复杂性的能力要好于以体积庞大、运算速度超快的串行计算机为基础的传统超级计算机。在采用稀疏分布式内存的超级计算机里,记忆与数据处理之间的差异消失了。记忆成为了感知的再现,与最初的认知行为没有什么区别。两者都是从一大堆互相连接的部件中涌现出来的模式。

西赖丁精神病院:West Riding Lunatic Asylum

巨蟒剧团之飞翔的马戏团(Monty Python's Flying Circus):1969年英国BBC电视台推出的一个电视滑稽剧。

约翰·休林-杰克逊(John Hughlings Jackson, 1835.03.04~1911.10.07):英国皇家学会会员,英国精神病学家。

《记忆的发明》:The Invention of Memory

《天朝仁学广览》:Celestial Emporium of Benevolent Knowledge

怀尔德·潘菲尔德(Wilder Graves Penfield, 1891.01.26~1976.04.05):加拿大神经外科医生、神经生理学家。

道格拉斯·霍夫施塔特(Douglas Richard Hofstadter, 1945.02.15~):美国作家,从事意识思考及创造力方面的研究。侯世达是他的中文名。其著作《哥德尔、埃舍尔、巴赫》获得1980年普立兹非小说类别奖。——译自「维基百科」

戴维·马尔(David Courtnay Marr, 1945.01.19~1980.11.17):英国神经系统科学家、心理学家。马尔整合心理学、人工智能及神经生理学研究成果,提出了视觉处理新模式,被公认为计算神经科学创始人。——译自「维基百科」

彭蒂·卡内尔瓦(Pentti Kanerva):发明「稀疏分布记忆」算法。现为雷氏神经系统科学研究所研究员。

稀疏分布记忆:Sparse Distributed Memory

帕罗奥多市(Palo Alto):位于加州北部湾区地带,著名的斯坦福大学就位于该市。

数字设备公司:Digital Equipment Corporation

2.5 从量变到质变

满满一槽的水。当你拔去水槽的塞子,水就会开始搅动,形成涡流。涡流发展成为漩涡,像有生命一般成长。不一会儿,漩涡从水面扩展到槽底,带动了整个水槽里的水。不停变化的水分子瀑布在龙卷中旋转,时刻改变着漩涡的形状。而漩涡持续不变,就在崩溃的边缘舞动。「我们并非僵滞的死物,而是自我延续的模式,」诺伯特·维纳[1]如是写道。

水槽空了,所有的水都通过漩涡而流得一干二净。当满槽水都从槽里排入下水道后,漩涡的模式到哪去了呢?这模式又是从何而来呢?

不管我们在何时拔掉塞子,漩涡都会无一例外地出现。漩涡是一种涌现的事物——如同群一样,它的能量及结构蕴涵于群体而非单个水分子的能量和特性之中。不论你多么确切地了解H2O(水的分子式)的化学特征,它都不会告诉你任何有关漩涡的特征。一如所有涌现的事物,漩涡的特性来源于大量共存的其他个体;在之前所举的例子中,是满满一槽的水分子。一滴水并不足以显现出漩涡,而一把沙子也不足以引发沙丘的崩塌。事物的涌现大都依赖于一定数量的个体,一个群体,一个集体,一个团伙,或是更多。

数量能带来本质性的差异。一粒沙子不能引起沙丘的崩塌,但是一旦堆积了足够多的沙子,就会出现一个沙丘,进而也就能引发一场沙崩。一些物理属性,如温度,也取决于分子的集体行为。空间里的一个孤零零的分子并没有确切的温度。温度更应该被认为是一定数量分子所具有的群体性特征。尽管温度也是涌现出来的特征,但它仍然可以被精确无疑地测量出来,甚至是可以预测的。它是真实存在的。

科学界早就认为大量个体和少量个体的行为存在重大差异。群聚的个体孕育出必要的复杂性,足以产生涌现的事物。随着成员数目的增加,两个或更多成员之间可能的相互作用呈指数级增长。当连接度高且成员数目大时,就产生了群体行为的动态特性。——量变引起质变。

诺伯特·维纳(Norbert Wiener, 1894.11.26~1964.03.08):美国数学家,美国科学院院士,控制论的创始人。

2.6 群集的利与弊

有两种极端的途径可以产生「更多」。一种途径是按照顺序操作的思路来构建系统,就像工厂的装配流水线一样。这类顺序系统的原理类似于钟表的内部逻辑——通过一系列的复杂动作来映衬出时间的流逝。大多数机械系统遵循的都是这种逻辑。

还有另一种极端的途径。我们发现,许多系统都是将并行运作的部件拼接在一起,很像大脑的神经元网络或者蚂蚁群落。这类系统的动作是从一大堆乱糟糟且又彼此关联的事件中产生的。它们不再像钟表那样,由离散的方式驱动并以离散的方式显现,更像是有成千上万个发条在一起驱动一个并行的系统。由于不存在指令链,任意一根发条的某个特定动作都会传递到整个系统,而系统的局部表现也更容易被系统的整体表现所掩盖。从群体中涌现出来的不再是一系列起关键作用的个体行为,而是众多的同步动作。这些同步动作所表现出的群体模式要更重要得多。这就是群集模型。

这两种极端的组织方式都只存在于理论之中,因为现实生活中的所有系统都是这两种极端的混合物。某些大型系统更倾向于顺序模式(如工厂),而另外一些则倾向于网络模式(如电话系统)。

我们发现,宇宙中最有趣的事物大都靠近网络模式一端。彼此交织的生命,错综复杂的经济,熙熙攘攘的社会,以及变幻莫测的思绪,莫不如此。作为动态的整体,它们拥有某些相同的特质:比如,某种特定的活力。

这些并行运转的系统中有我们所熟知的各种名字:蜂群、电脑网络、大脑神经元网络、动物的食物链、以及代理群集。上述系统所归属的种类也各有其名称:网络、复杂自适应系统、群系统、活系统、或群集系统。我在这本书中用到了所有这些术语。

每个系统在组织上都汇集了许多(数以千计的)自治成员。「自治」意味着每个成员根据内部规则以及其所处的局部环境状况而各自做出反应。这与服从来自中心的命令,或根据整体环境做出步调一致的反应截然不同。

这些自治成员之间彼此高度连接,但并非连到一个中央枢纽上。它们组成了一个对等网络。由于没有控制中心,人们就说这类系统的管理和中枢是去中心化分布在系统中的,与蜂巢的管理形式相同。

以下是分布式系统的四个突出特点,活系统的特质正是由此而来:

没有强制性的中心控制

次级单位具有自治的特质

次级单位之间彼此高度连接

点对点间的影响通过网络形成了非线性因果关系

上述特点在分布式系统中的重要度和影响力尚未经过系统地检验。

本书主题之一是论述分布式人造活系统——如并行计算、硅神经网络芯片、以及因特网这样的庞大在线网络等——在向人们展示有机系统的迷人之处的同时,也暴露出它们的某些缺陷。

上一章 目录 下一章