他用白线在中央画了一个大圈。「你们能在圈里摆个绿色的『5』吗?」他问观众。观众们瞪眼看着一排排红色像素。这个游戏有点像在体育场举着广告牌拼成画面,但现在没有预先设置好的顺序,只有一个虚拟的映象。红色背景中立即零落地出现了绿色像素,歪歪扭扭,毫无规则地扩大,因为那些认为自己的座位在「5」的路径上的人把纸棒翻成了绿色。一个原本模糊的图形越来越清晰了。喧闹声中,观众们开始共同辨认出一个「5」。「5」字一经认出,便陡然清晰起来。坐在图形模糊边缘的纸棒挥舞者确定了自己「应该」处的位置,使「5」字显得更加清晰。数字自己把自己拼搭出来了。
「现在,显示『4』!」声音响起来。瞬时出现一个「4」。「3」,眨眼功夫「3」显示出来。接着迅速地、不断地一个个显现出「2……1……0。」
罗伦·卡彭特在屏幕上启动了一个飞机飞行模拟器。他简洁地说明玩法:「左边的人控制翻滚,右边的人控制机头倾角。如果你们把飞机指向任何有趣的东西,我会向它发射火箭。」飞机初始态是在空中。飞行员是……五千名新手。会堂第一次完全静了下来。随着飞机挡风玻璃外面的情景展现出来,所有人都在研究导航仪。飞机正朝着粉色小山之间的粉色山谷中降落。跑道看上去非常窄小。
让飞机乘客共同驾驶飞机的想法既令人兴奋,又荒唐可笑。这种粗蛮的民主感觉真带劲儿。作为乘客,你有权来参与表决每个细节,不仅可以决定飞机航向,而且可以决定何时调整襟翼以改变升力。
但是,群体智慧在飞机着陆的关键时刻似乎成了不利条件,这时可没空均衡众意。当五千名与会者开始为着陆降低高度时,安静的大厅暴发出高声呼喝和急迫的口令。会堂仿佛变成了危难关头的驾驶员座舱。「绿,绿,绿!」一小部分人大声喊道。「红色再多点!」一会儿,另一大群人又喊道。「红色,红色,红——色!」飞机令人晕眩地向左倾斜。显然,它将错过跑道,机翼先着地了。飞行模拟器不像「乒乓」游戏,它从液压杆动作到机身反应,从轻推副翼杆到机身侧转,设定了一段时间的延迟反馈。这些隐藏起来的信号扰乱了群体的思维。受矫枉过正的影响,机身陷入俯仰震荡。飞机东扭西歪。但是,众人不知怎么又中断了着陆程序,理智地拉起机头复飞。他们将飞机转向,重新试着着陆。
他们是如何掉转方向的?没有人决定飞机左转还是右转,甚至转不转都没人能决定,没人作主。然而,仿佛是万众一心,飞机侧转并离场。再次试图着陆,再次摇摆不定。这次没经过沟通,众人又像群鸟乍起,再次拉起飞机。飞机在上升过程中稍稍摇摆了一下,然后又侧滚了一点。在这不可思议的时刻,五千人同时有了同样坚定的想法:「不知道能否翻转360度?」
众人没说一句话,继续翻转飞机。这下没有回头路了。随着地平线令人眼花缭乱的上下翻转,五千名外行飞行员在第一次单飞中让飞机打了个滚。那动作真是非常优美。他们起立为自己长时间鼓掌喝彩。
参与者做到了鸟儿做的事:他们成功地结成了一群。不过,他们的结群行为是自觉的。当合作形成「5」字或操纵飞机的时候,他们是对自己的总体概貌做出反应。而飞行途中的一只鸟对自己的鸟群形态并没有全局概念。结队飞行的鸟儿对鸟群的飞行姿态和聚合是视而不见的。「群态」正是从这样一群完全罔顾其群体形状、大小或队列的生物中涌现出来的。
拂晓时分,在杂草纵生的密歇根湖上,上万只野鸭躁动不安。在清晨柔和的淡红色光辉映照下,野鸭们吱吱嘎嘎地叫着,抖动着自己的翅膀,将头插进水里寻找早餐。它们散布在各处。突然,受到某种人类感觉不到的信号的提示,一千只鸭子如一个整体似的腾空而起。它们轰然飞上天空,随之带动湖面上另外千来只野鸭一起腾飞,仿佛它们就是一个躺着的巨人,现在翻身坐起了。这头令人震惊的巨兽在空中盘旋着,转向东方的太阳,眨眼间又急转,前队变为后队。不一会儿,仿佛受到某种单一想法的控制,整群野鸭转向西方,飞走了。十七世纪的一位无名诗人写道:「……成千上万条鱼如一头巨兽游动,破浪前进。它们如同一个整体,似乎受到不可抗拒的共同命运的约束。这种一致从何而来?」
一个鸟群并不是一只硕大的鸟。科学报道记者詹姆斯·格雷克[2]写道:「单只鸟或一条鱼的运动,无论怎样流畅,都不能带给我们像玉米地上空满天打旋的燕八哥或百万鲰鱼鱼贯而行的密集队列所带来的震撼。……(鸟群疾转逃离掠食者的)高速电影显示出,转向的动作以波状传感的方式,以大约七十分之一秒的速度从一只鸟传到另一只鸟。比单只鸟的反应要快得多。」鸟群远非鸟的简单聚合。
在《蝙蝠侠归来》中有一个场景,一大群黑色大蝙蝠一窝蜂地穿越水淹的隧道涌向纽约市中心。这些蝙蝠是由电脑制作的。动画绘制者先制作一只蝙蝠,并赋予它一定的空间以使之能自动地扇动翅膀;然后再复制出几十个蝙蝠,直至成群。之后,让每只蝙蝠独自在屏幕上四处飞动,但要遵循算法中植入的几条简单规则:不要撞上其他的蝙蝠,跟上自己旁边的蝙蝠,离队不要太远。当这些「算法蝙蝠」在屏幕上运行起来时,就如同真的蝙蝠一样成群结队而行了。
群体规律是由克雷格·雷诺兹[3]发现的。他是在图像硬件制造商Symbolics工作的计算机科学家。他有一个简单的方程,通过对其中各种作用力的调整——多一点聚力,少一点延迟——雷诺德能使群体的动作形态像活生生的蝙蝠群、麻雀群或鱼群。甚至在《蝙蝠侠归来》中的行进中的企鹅群也是根据雷诺兹的运算法则聚合的。像蝙蝠一样,先一古脑地复制很多计算机建模的三维企鹅,然后把它们释放到一个朝向特定方向的场景中。当它们行进在积雪的街道上,就轻易地出现了推推搡搡拥挤的样子,不受任何人控制。
雷诺兹的简单算法所生成的群体是如此真实,以致于当生物学家们回顾了自己所拍摄的高速电影后,他们断定,真实的鸟类和鱼类的群体行为必然源自于一套相似的简单规则。群体曾被看作是生命体的决定性象征,某些壮观的队列只有生命体才能实现。如今根据雷诺兹的算法,群体被看作是一种自适应的技巧,适用于任何分布式的活系统,无论是有机的还是人造的。
罗伦·卡彭特(Loren Carpenter, 1947~):电脑图形图像专家,皮克斯动画工作室创始人之一并担任其首席科学家。——译自「维基百科」
詹姆斯·格雷克(James Gleick, 1954.08.01~):作家、记者、传记记者。他的书揭示了科学技术的文化派别,其中3本分获普利兹奖和国家图书奖的决赛资格,并被译成二十多种文字。——译自「维基百科」
克雷格·雷诺兹(Craig Reynolds, 1953.03.15~):仿真生命与电脑图形图像专家,1986年发明仿真人工生命「类鸟群」。——译自「维基百科」
2.3 非匀质的看不见的手
蚂蚁研究的先驱者惠勒率先使用「超级有机体」来称呼昆虫群体的繁忙协作,以便清楚地和「有机体」所代表的含义区分开来。惠勒受到世纪之交(1900年左右)的哲学潮流影响。该潮流主张通过观察组成部分的个体行为去理解其上层的整体模式。当时的科学发展正一头扎入对物理学、生物学、以及所有自然科学的微观细节的研究之中。这种一窝蜂上的将整体还原为其组成部分的研究方式,在当时被看作是能够理解整体规律的最实际做法,而且将会持续整个世纪(指21世纪),至今仍是科学探索的主要模式。惠勒和他的同事们是这种还原观点的主要拥护者,并身体力行,写就了五十篇关于神秘的蚂蚁行为的专题论文。但在同一时刻,惠勒还从超越了蚂蚁群体固有特征的超级有机体中看到了「涌现的特征」。惠勒认为,集群所形成的超级有机体,是从大量聚集的普通昆虫有机体中「涌现」出来的。他指出,这种涌现是一种科学,一种技术的、理性的解释,而不是什么神秘主义或炼金术。
惠勒认为,这种涌现的观念为调和「将之分解为部分」和「将之视为一个整体」两种不同的方法提供了一条途径。当整体行为从各部分的有限行为里有规律地涌现时,身体与心智、整体与部分的二元性就真正烟消云散了。不过当时,人们并不清楚这种超越原有的属性是如何从底层涌现出来的。现在也依然如此。
惠勒团队清楚的是:涌现是一种非常普遍的自然现象。与之相对应的是日常可见的普通因果关系,就是那种A引发B, B引发C,或者2+2=4这样的因果关系。化学家援引普通的因果关系来解释实验观察到的硫原子和铁原子化合为硫化铁分子的现象。而按照当时的哲学家C·劳埃德·摩根[1]的说法,涌现这个概念表现的是一种不同类型的因果关系。在这里,2+2并不等于4,甚至不可能意外地等于5。在涌现的逻辑里,2+2=苹果。「涌现——尽管看上去多少都有点跃进(跳跃)——的最佳诠释是它是事件发展过程中方向上的质变,是关键的转折点。